Amateur Astronomer Images Spy Satellite

As anyone who’s looked at the sky just before dawn or right after dusk can confirm, for the last seventy years or so there have been all kinds of artificial satellites floating around in low-Earth orbit that are visible to the naked eye. Perhaps the most famous in the last few decades is the International Space Station, but there are all kinds of others up there from amateur radio satellites, the Starlink constellation, satellite TV, and, of course, various spy satellites from a few of the world’s governments. [Felix] seems to have found one and his images of it can be found here.

[Felix] has been taking pictures of the night sky for a while now, including many different satellites. While plenty of satellites publish their paths to enable use, spy satellites aren’t generally public record but are still able to be located nonetheless. He uses a large Dobsonian telescope to resolve the images of several different satellites speculated to be spy satellites, with at least one hosting a synthetic aperture radar (SAR) system. His images are good enough to deduce the size and shape of the antennas used, as well as the size of the solar panels on board.

As far as being concerned about the ramifications of imaging top-secret technology, [Felix] is not too concerned. He states that it’s likely that most rival governments would be able to observe these satellites with much more powerful telescopes that he has, so nothing he has published so far is likely to be a surprise to anyone. Besides, these aren’t exactly hidden away, either; they’re up in the sky for anyone to see. If you want to take a shot at that yourself you can get a Dobsonian-like telescope mostly from parts at Ikea, and use a bit of off-the-shelf electronics to point them at just the right position too.

Orion Ceases Operations, Future Of Meade Unclear

There was a time when building a telescope was a rite of passage for budding astronomers, much as building a radio was the coming age for electronics folks. These days, many things are cheaper to buy than build, even though we do enjoy building anything we can. Orion was a big name in telescopes for many years. Their parent company also owned Meade and Coronado, both well-known optical brands. A recent video from [Reflactor] brought it to our attention that Orion abruptly ceased operations on July 9th.

We always hate to hear when well-known brands that serve a big part of our community vanish. According to [Reflactor], people who have telescopes with the company for repair are likely to never see them again. [Dylan O’Donnell] also had a video about it (see below), and, as he notes, at that time, the website was still operating, but it’s gone now. To add further fuel to the fire Sky & Telescope ran an article on July 12th saying that Meade was also on the chopping block, although at the time of this writing, their site is still online.

You have to wonder what problems you might have selling telescopes today. Many people live where there is light pollution. We’d like to think there are still people who want to ponder the universe from their backyard, though.

There are still people selling telescopes, so presumably, one of them — maybe Celestron — will take up the slack. Or maybe we’ll see a resurgence in telescope homebrewing.

After all, if you have a 3D printer, you could make a 114/900 mm telescope on a tight budget. Or, try IKEA.

Continue reading “Orion Ceases Operations, Future Of Meade Unclear”

Celebrating The [Jack Ells] Automatic Photometric Telescope

Here at Hackaday, we take pride in presenting the freshest hacks and the best of what’s going on today in the world of hardware hacking. But sometimes, we stumble upon a hack from the past so compelling that we’ve got to bring it to you, so we can all marvel at what was possible in the Before Times.

This one, a completely homebrewed automatic photometric telescope, was designed and built by the father-son team of [Jack Ells] and [Peter Ells]. From the elder [Ells]’ field notes, the telescope saw its first light in 1988, giving us some idea of the scale of problems that had to be overcome to get this wonderful machine working. The optics are straightforward, as least as telescopes go — it’s an f-4.0 Newtonian reflector with an 8.5″ (221 mm) primary mirror on an equatorial mount. The telescope is very rugged-looking indeed, and even stands on brick piers for stability. The telescope’s mount is controlled by a BBC Micro running custom BASIC software.

For the photometric parts, the [Ells] boys installed a photo-multiplier tube at the focus of the telescope. More precisely, they used a liquid light guide to connect the eyepiece to a rack full of equipment, which included the PM tube, its high-voltage power supply, and a series of signal conditioners and counter circuits. The idea was to view a single star through a pinhole mask over the objective of the telescope and count the rate of photons received over time. Doing so would reveal periodic changes in the star’s brightness. Today we’d use similar data to search for exoplanet transits; while we don’t think that was a thing back in 1988, it looks like this telescope could easily have handled the job.

Sadly, [Jack Ells] died only two years after finishing the telescope. But he left it with his son, who eventually moved it to a location with better seeing conditions, where it gathered data for another eight years. The quality of the work is amazing, and as father-son projects go, this one is tough to beat.

Continue reading “Celebrating The [Jack Ells] Automatic Photometric Telescope”

The New Extremely Large Telescopes And The US’ Waning Influence In Astronomy

For many decades, the USA has been at the forefront of astronomy, whether with ground-based telescopes or space-based observatories like Hubble and the JWST. Yet this is now at risk as US astronomers are forced to choose between funding either the Giant Magellan Telescope (GMT) or the Thirty Meter Telescope (TMT) as part of the US Extremely Large Telescope (USELT) program. This rightfully has the presidents of Carnegie Science and Caltech – [Eric D. Isaacs] and [Thomas F. Rosenbaum] respectively – upset, with their opinion piece in the Los Angeles Times going over all the reasons why this funding cut is a terrible idea.

The slow death of US astronomy is perhaps best exemplified by the slow death and eventual collapse of the Arecibo radio telescope. Originally constructed as a Cold War era ICBM detector, it found grateful use by radio astronomers, but saw constant budget cuts and decommissioning threats. After Arecibo’s collapse, it’s now China with its FAST telescope that has mostly taken the limelight. In the case of optical telescopes, the EU’s own ELT is expected to be online in 2028, sited close to the GMT in the Atacama desert. The TMT would be sited in Hawai’i.

Continue reading “The New Extremely Large Telescopes And The US’ Waning Influence In Astronomy”

Tokyo Atacama Observatory Opens As World’s Highest Altitude Infrared Telescope

Cerro Chajnantor, site of TAO

Although we have a gaggle of space telescopes floating around these days, there is still a lot of value in ground-based telescopes. These generally operate in the visible light spectrum, but infrared ground-based telescopes can also work on Earth, assuming that you put them somewhere high in an area where the atmosphere is short on infrared-radiation absorbing moisture. The newly opened Universe of Tokyo Atacama Observatory (TAO) with its 6.5 meter silver-coated primary mirror is therefore placed on the summit of Cerro Chajnantor at 5,640 meters, in the Atacama desert in Chile.

This puts it only a few kilometers away from the Atacama Large Millimeter Array (ALMA), but at a higher altitude by about 580 meters. As noted on the University of Tokyo project site (in Japanese), the project began in 1998, with a miniTAO 1 meter mirror version being constructed in 2009 to provide data for the 6.5 meter version. TAO features two instruments (SWIMS and MIMIZUKU), each with a specific mission profile, but both focused on deciphering the clues about the Universe’s early history, a task for which infrared is significantly more suitable due to redshift.

Wireless Telescope Guidance You Can Build On The Cheap

Telescopes are fun to point around the sky, but they’re even better when you have some idea of what you’re actually looking at. Experienced sky-gazers love nothing more than whipping out some quality glassware and pointing it to the heavens to try and view some photons from some fancy celestial point of interest. To aid your own endeavors in this realm, you might consider following [aeropic’s] example in building a capable wireless telescope DSC.

Yes, [aeropic] built a capable digital setting circle (DSC) which can be used to quickly point a telescope at objects in the sky, with the aid of the right astronomical software. An ESP32 board runs the show, using AS5600 positional encoders on each axis of the telescope to understand the device’s orientation. The encoders are attached via 3D-printed components to track the motion of the telescope accurately. It can then be paired over Bluetooth with a smartphone running an app like Skysafari. Once calibrated on some known stars, the app can then read the encoder outputs from the telescope, and help guide the user to point the device at other stars in the night sky.

The rig won’t actually move the telescope for you, it just guides you towards what you want to look at. Even still, it makes finding points of interest much faster and could help you get a lot more out of your next sky viewing party. Have fun out there! Video after the break.

Continue reading “Wireless Telescope Guidance You Can Build On The Cheap”

They Want To Put A Telescope In A Crater On The Moon

When we first developed telescopes, we started using them on the ground. Humanity was yet to master powered flight, you see, to say nothing of going beyond into space. As technology developed, we realized that putting a telescope up on a satellite might be useful, since it would get rid of all that horrible distortion from that pesky old atmosphere. We also developed radio telescopes, when we realized there were electromagnetic signals beyond visible light that were of great interest to us.

Now, NASA’s dreaming even bigger. What if it could build a big radio telescope up on the Moon?

Continue reading “They Want To Put A Telescope In A Crater On The Moon”