Will .IO Domain Names Survive A Geopolitical Rearrangement?

The Domain Name System (DNS) is a major functional component of the modern Internet. We rely on it for just about everything! It’s responsible for translating human-friendly domain names into numerical IP addresses that get traffic where it needs to go. At the heart of the system are the top-level domains (TLDs)—these sit atop the whole domain name hierarchy.

You might think these TLDs are largely immutable—rock solid objects that seldom change. That’s mostly true, but the problem is that these TLDs are sometimes linked to real-world concepts that are changeable. Like the political status of various countries! Then, things get altogether more complex. The .io top level domain is the latest example of that.

Continue reading “Will .IO Domain Names Survive A Geopolitical Rearrangement?”

Recycling Tough Plastics Into Precursors With Some Smart Catalyst Chemistry

Plastics are unfortunately so cheap useful that they’ve ended up everywhere. They’re filling our landfills, polluting our rivers, and even infiltrating our food chain as microplastics. As much as we think of plastic as recyclable, too, that’s often not the case—while some plastics like PET (polyethylene terephthalate) are easily reused, others just aren’t.

Indeed, the world currently produces an immense amount of polyethylene and polypropylene waste. These materials are used for everything from plastic bags to milk jugs and for microwavable containers—and it’s all really hard to recycle. However, a team at UC Berkeley might have just figured out how to deal with this problem.

Continue reading “Recycling Tough Plastics Into Precursors With Some Smart Catalyst Chemistry”

Vehicle-To-Everything: The Looming Smart Traffic Experience

Much of a car’s interaction with the world around it is still a very stand-alone, analog experience, regardless of whether said car has a human driver or a self-driving computer system. Mark I eyeballs or equivalent computer-connected sensors perceive the world, including road markings, traffic signs and the locations of other road traffic. This information is processed and the car’s speed and trajectory are adjusted to ideally follow the traffic rules and avoid unpleasant conversations with police officers, insurance companies, and/or worse.

An idea that has been kicked around for a few years now has been to use wireless communication between cars and their environment to present this information more directly, including road and traffic conditions, independent from signs placed near or on the road. It would also enable vehicle-to-vehicle communication (V2V), which somewhat like the transponders in airplanes would give cars and other vehicles awareness of where other traffic is hanging out. Other than V2V, Vehicle-to-Everything (V2X) would also include communication regarding infrastructure (V2I), pedestrians (V2P) and an expansive vehicle-to-network (V2N) that gives off strong Ghost in the Shell vibes.

Is this is the future of road traffic? The US Department of Transport (DOT) seems to think that its deployment will be a good thing, but V2X has been stuck in regulatory hurdles. This may now change, with the DOT releasing a roadmap for its deployment.

Continue reading “Vehicle-To-Everything: The Looming Smart Traffic Experience”

Fukushima Daiichi: Cleaning Up After A Nuclear Accident

On 11 March, 2011, a massive magnitude 9.1 earthquake shook the west coast of Japan, with the epicenter located at a shallow depth of 32 km,  a mere 72 km off the coast of Oshika Peninsula, of the Touhoku region. Following this earthquake, an equally massive tsunami made its way towards Japan’s eastern shores, flooding many kilometers inland. Over 20,000 people were killed by the tsunami and earthquake, thousands of whom were dragged into the ocean when the tsunami retreated. This Touhoku earthquake was the most devastating in Japan’s history, both in human and economic cost, but also in the effect it had on one of Japan’s nuclear power plants: the six-unit Fukushima Daiichi plant.

In the subsequent Investigation Commission report by the Japanese Diet, a lack of safety culture at the plant’s owner (TEPCO) was noted, along with significant corruption and poor emergency preparation, all of which resulted in the preventable meltdown of three of the plant’s reactors and a botched evacuation. Although afterwards TEPCO was nationalized, and a new nuclear regulatory body established, this still left Japan with the daunting task of cleaning up the damaged Fukushima Daiichi nuclear plant.

Removal of the damaged fuel rods is the biggest priority, as this will take care of the main radiation hazard. This year TEPCO has begun work on removing the damaged fuel inside the cores, the outcome of which will set the pace for the rest of the clean-up.

Continue reading “Fukushima Daiichi: Cleaning Up After A Nuclear Accident”

Catching The BOAT: Gamma-Ray Bursts And The Brightest Of All Time

Down here at the bottom of our ocean of air, it’s easy to get complacent about the hazards our universe presents. We feel safe from the dangers of the vacuum of space, where radiation sizzles and rocks whizz around. In the same way that a catfish doesn’t much care what’s going on above the surface of his pond, so too are we content that our atmosphere will deflect, absorb, or incinerate just about anything that space throws our way.

Or will it? We all know that there are things out there in the solar system that are more than capable of wiping us out, and every day holds a non-zero chance that we’ll take the same ride the dinosaurs took 65 million years ago. But if that’s not enough to get you going, now we have to worry about gamma-ray bursts, searing blasts of energy crossing half the universe to arrive here and dump unimaginable amounts of energy on us, enough to not only be measurable by sensitive instruments in space but also to effect systems here on the ground, and in some cases, to physically alter our atmosphere.

Gamma-ray bursts are equal parts fascinating physics and terrifying science fiction. Here’s a look at the science behind them and the engineering that goes into detecting and studying them.

Continue reading “Catching The BOAT: Gamma-Ray Bursts And The Brightest Of All Time”

A Look At The Small Web, Part 1

In the early 1990s I was privileged enough to be immersed in the world of technology during the exciting period that gave birth to the World Wide Web, and I can honestly say I managed to completely miss those first stirrings of the information revolution in favour of CD-ROMs, a piece of technology which definitely didn’t have a future. I’ve written in the past about that experience and what it taught me about confusing the medium with the message, but today I’m returning to that period in search of something else. How can we regain some of the things that made that early Web good?

We All Know What’s Wrong With The Web…

It’s likely most Hackaday readers could recite a list of problems with the web as it exists here in 2024. Cory Doctrow coined a word for it, enshitification, referring to the shift of web users from being the consumers of online services to the product of those services, squeezed by a few Internet monopolies. A few massive corporations control so much of our online experience from the server to the browser, to the extent that for so many people there is very little the touch outside those confines. Continue reading “A Look At The Small Web, Part 1”

Reinforcing Plastic Polymers With Cellulose And Other Natural Fibers

While plastics are very useful on their own, they can be much stronger when reinforced and mixed with a range of fibers. Not surprisingly, this includes the thermoplastic polymers which are commonly used with FDM 3D printing, such as polylactic acid (PLA) and polyamide (PA, also known as nylon). Although the most well-known fibers used for this purpose are probably glass fiber (GF) and carbon fiber (CF), these come with a range of issues, including their high abrasiveness when printing and potential carcinogenic properties in the case of carbon fiber.

So what other reinforcing fiber options are there? As it turns out, cellulose is one of these, along with basalt. The former has received a lot of attention currently, as the addition of cellulose and similar elements to thermopolymers such as PLA can create so-called biocomposites that create plastics without the brittleness of PLA, while also being made fully out of plant-based materials.

Regardless of the chosen composite, the goal is to enhance the properties of the base polymer matrix with the reinforcement material. Is cellulose the best material here?

Continue reading “Reinforcing Plastic Polymers With Cellulose And Other Natural Fibers”