Another Commodore Portable We Never (Quite) Received

The story of Commodore computers is one of some truly great machines for their time, and of the truly woeful marketing that arguably spelled their doom. But there’s another Commodore computing story, that of the machines we never received, many of which came close enough to production  that they might have made it.

[Old VCR] has the story of one of these, and it’s a portable. It’s not a C64 like the luggable which did emerge, neither is it the legendary LCD portable prototype in the possession of our Hackaday colleague [Bil Herd]. Instead it’s a palmtop branded under licence from Toshiba, and since it’s a rare device even its home country of Japan the article gives us perhaps the only one we’ll ever see with either badge.

The Commodore HHC-4 was announced at Winter CES 1983, and since it was never seen again it’s aroused some curiosity among enthusiasts. The article goes to some lengths to cross-reference the visible features and deduce that it’s in fact a Toshiba Pasopia Mini, a typical palmtop computer of the era with not much in the way of processing power, a small alphanumeric display, and a calculator-style QWERTY keyboard. We’re treated to a teardown of a Toshiba unit and its dock, revealing some uncertainty about which processor architecture lurks in those Toshiba custom chips.

Looking at the magazine reviews and adverts it seems as though Commodore may have had some machines with their branding on even if they never sold them, so there exists the tantalizing possibility of one still lurking forgotten in the possession of a former staffer. We can hope.

If Commodore history interests you, you really should read [Bil]’s autobiographical account of the company in the 1980s.

C64 Gets A Graphics Upgrade Courtesy Of Your Favorite Piano Manufacturer

The Commodore 64 was quite a machine in its time, though a modern assessment would say that it’s severely lacking in the graphical department. [Vossi] has whipped up a bit of an upgrade for the C64 and C128, in the form of a graphics expansion card running Yamaha hardware.

As you might expect, the expansion is designed to fit neatly into a C64 cartridge slot. The card runs the Yamaha V9958—the video display processor known for its appearance in the MSX2+ computers. In this case, it’s paired with a healthy 128 kB of video RAM so it can really do its thing. The V9958 has an analog RGB output that can be set for PAL or NTSC operation, and can perform at resolutions up to 512×212 or even 512×424 interlaced. Naturally, it needs to be hooked directly up to a compatible screen, like a 1084, or one with SCART input. [Vossi] took the time to create some demos of the chip’s capabilities, drawing various graphics in a way that the C64 couldn’t readily achieve on its own.

It’s a build that almost feels like its from an alternate universe, where Yamaha decided to whip up a third-party graphics upgrade for the C64. That didn’t happen, but stranger team ups have occurred over the years.

[Thanks to Stephen Walters for the tip!]

Nearly-Destroyed Commodore Gets New Life

We all have our shiny, modern computers for interacting with the modern world, but at times they can seem a little monochromatic. Even the differences between something like macOS and Windows for the average user often boil down to which operating system loads an Internet browser. There are obviously more differences than that, but back in the 80s it was much more extreme with interoperability a pipe dream in most cases. What keeps drawing people to maintaining and using computers from that chaotic era is more tangible compared to modern machines, and that is meant quite literally; computers from this era can be saved from an extreme amount of degradation like this Commodore that was nearly completely destroyed before it was re-discovered.

The first step was to restore the case of this Commodore PC20-III, but the restoration of the computer’s internals took a bit more time. First, the entire board was de-soldered, with any rare chips being set aside for future use. Unfortunately the board itself was too corroded and otherwise damaged to be used, but since these were just two-layer boards it could be photographed and then re-created in CAD software to make a near-perfect duplicate of the original. The team at [The Cave] took the opportunity to add patch wires which would have been present in the original machine into the PCB, and made some other upgrades as well like adding sockets to various chips that would have been originally soldered to the board.

The passive components, especially capacitors, were brand new as well and some period-correct components such as a monitor and keyboard finish out the build. The computer boots on the first try, and is quickly put through its paces testing the hard disk drive, using the old floppy drive, and even playing a few video games from the era. The fact that retrocomputers like these are easy (by modern standards) to reverse engineer and restore surely leads to their continued popularity, and we’ve seen everything from C64s to this 128DCR get a similar full restoration.

Continue reading “Nearly-Destroyed Commodore Gets New Life”

Drop-In Switch Mode Regulators

Perhaps the simplest way to regulate a DC voltage is using a voltage divider and/or an active device like a Zener diode. Besides simplicity, they have the additional advantage of not being particularly noisy, but with a major caveat: they are terribly inefficient. To solve this problem a switching regulator can be used instead, but that generally increases complexity and noise. With careful design, though, a switching regulator can be constructed to almost completely replicate a linear regulator like this drop-in TO3 replacement. (Google Translate from German)

While the replacement regulator was built by [Mr. Floppy], the units are being put to the test in the linked video below by [root42]. The major problem these solve compared to other switching regulators is the suppression of ripple, which is a high-frequency artifact that appears on the DC voltage. Reducing ripple in this situation involved designing low-inductance circuit traces on the PCB as well as implementing a number of EMI filters on both input and output. The final result is an efficient voltage supply for retrocomputers which has a ripple lower than their oscilloscopes can measure without special tools.

[root42] is not only testing these, but the linked video also has him using the modules to repair a Commodore 1541 which originally had the linear TO3 voltage regulators. It’s definitely a non-trivial task to build a switching power supply that meets the requirements of sensitive electronics like these. Switch mode power supplies aren’t new ideas, either, and surprisingly pre-date the first commercially-available transistor although modern ones like these are much less expensive to build.

Continue reading “Drop-In Switch Mode Regulators”

Commodore CHESSmate Replica Runs On The ESP32

The Commodore CHESSmate chess computer might not be terribly well known, but that doesn’t make it any less worthy of being reproduced. If anything it is more important, as it gives more people an opportunity to use one of these devices, yet beyond a purely emulated experience the real user interface is harder to experience.

Internals of the reproduction Commodore ChessMate (Credit: Michael Gardi)

This is where [Michael Gardi]’s modernized replica provides a highly accessible version, consisting of a custom PCB with an ESP32 as the brains of the system. Although decidedly overkill next to the 6502 in the original CHESSmate, it makes the project far easier for others to assemble as it contains few components that shouldn’t be readily available.

The ESP32 is mounted on a small daughterboard which plugs into the main PCB with the buttons, LEDs and indicators. The whole stack is then inserted into the 3D printed reproduction case. These 3D models along with the ESP32 port of the CHESSmate firmware can be found in the GitHub repository, along with a minimalist frame and a ‘CHESSmate Lite’ version as alternative enclosure options for those who somehow don’t appreciate the delightful 1980s aesthetics.

We covered the Commodore CHESSmate last year, including a highly faithful reproduction built by [Hans Otten], which [Michael] read the day after meeting [Peter Jennings], the author of MicroChess (which the CHESSmate uses internally) at an event at York University. Taking this as a sign, he set to work on this particular project.

We’re not sure if there’s really a cosmic force directing [Michael] towards his next project, but if there is, we’d like to take this opportunity to thank it for doing a fantastic job so far.

The Quaint History Of The Commodore ChessMate

The Commodore International of the 1970s was a company which dabbled in a bit of everything when it came to consumer electronics, with the Commodore ChessMate being a prime example of the circuitous way that some of its products came to be. Released in 1978, its existence was essentially the result of MOS Technology releasing the KIM-1 single board computer in 1976. In May of that year, [Peter Jennings] traveled all the way from Toronto, Canada to Cleveland, USA to attend the Midwest Regional Computer Conference and acquire a KIM-1 system and box of manuals for a mere $245. On this KIM-1 he’d proceed to develop his own chess game, called MicroChess, implemented fully in 6502 ASM to fit within the 1 kB of RAM.

As one of the first major applications to run on the KIM-1, it quickly became an international hit, which caught the attention of Commodore – which had acquired MOS Technology by then – who ended up contacting [Peter] about a potential chess computer project. This turned out to based on the custom MOS 6504 CPU, while sharing many characteristics with the KIM-1 SBC. Being a MicroChess-only system, the user experience was optimized for more casual users, with the user manual providing clear instructions on how to start a new game and how to enter the position of a newly moved piece, along with no less than eight difficulty settings.

If you’re feeling like making your own ChessMate, or want to dig into the technical details, this excellent article by [Hans Otten] has got you covered.

Top image: Commodore ChessMate Prototype in 1978. (Credit: Peter Jennings)

(Thanks to [Stephen Walters] for the tip)

Hackaday Links Column Banner

Hackaday Links: July 9, 2023

Good news this week from Mars, where Ingenuity finally managed to check in with its controllers after a long silence. The plucky helicopter went silent just after nailing the landing on its 52nd flight back on April 26, and hasn’t been heard from since. Mission planners speculated that Ingenuity, which needs to link to the Perseverance rover to transmit its data, landed in a place where terrain features were blocking line-of-sight between the two. So they weren’t overly concerned about the blackout, but still, one likes to keep in touch with such an irreplaceable asset. The silence was broken last week when Perseverance finally made it to higher ground, allowing the helicopter to link up and dump the data from the last flight. The goal going forward is to keep Ingenuity moving ahead of the rover, acting as a scout for interesting places to explore, which makes it possible that we’ll see more comms blackouts. Ingenuity may be more than ten-fold over the number of flights that were planned, but that doesn’t mean it’s ready for retirement quite yet.

Continue reading “Hackaday Links: July 9, 2023”