Bogey Six O’clock!: The AN/APS-13 Tail Warning Radar

Although we think of air-to-air radar as a relatively modern invention, it first made its appearance in WWII. Some late war fighters featured the AN/APS-13 Tail Warning Radar to alert the pilot when an enemy fighter was on his tail. In [WWII US Bombers]’ fascinating video we get a deep dive into this fascinating piece of tech that likely saved many allied pilots’ lives.

Fitted to aircraft like the P-51 Mustang and P-47 Thunderbolt, the AN/APS-13 warns the pilot with a light or bell if the aircraft comes within 800 yards from his rear. The system consisted of a 3-element Yagi antenna on the vertical stabilizer, a 410 Mhz transceiver in the fuselage, and a simple control panel with a warning light and bell in the cockpit.

In a dogfight, this allows the pilot to focus on what’s in front of him, as well as helping him determine if he has gotten rid of a pursuer. Since it could not identify the source of the reflection, it would also trigger on friendly aircraft, jettisoned wing tanks, passing flak, and the ground. This last part ended up being useful for safely descending through low-altitude clouds.

This little side effect turned out to have very significant consequences. The nuclear bombs used on Hiroshima and Nagasaki each carried four radar altimeters derived from the AN/APS-13 system.

Continue reading “Bogey Six O’clock!: The AN/APS-13 Tail Warning Radar”

Boss Byproducts: Fulgurites Are Fossilized Lightning

So far in this series, we’ve talked about man-made byproducts — Fordite, which is built-up layers of cured car enamel, and Trinitite, which was created during the first nuclear bomb test.

A fulgurite pendant.
A lovely fulgurite pendant. Image via Etsy

But not all byproducts are man-made, and not all of them are basically untouchable. Some are created by Mother Nature, but are nonetheless dangerous. I’m talking about fulgurites, which can form whenever lightning discharges into the Earth.

It’s likely that even if you’ve seen a fulgurite, you likely had no idea what it was. So what are they, exactly? Basically, they are natural tubes of glass that are formed by a fusion of silica sand or rock during a lightning strike.

Much like Lichtenberg figures appear across wood, the resulting shape mimics the path of the lightning bolt as it discharged into the ground. And yes, people make jewelry out of fulgurites.

Continue reading “Boss Byproducts: Fulgurites Are Fossilized Lightning”

FreeBSD At 30: The History And Future Of The Most Popular BSD-Based OS

Probably not too many people around the world celebrated November 1st, 2023, but on this momentous date FreeBSD celebrated its 30th birthday. As the first original fork of the first complete and open source Unix operating system (386BSD) it continues the legacy that the Berkeley Software Distribution (BSD) began in 1978 until its final release in 1995. The related NetBSD project saw its beginnings somewhat later after this as well, also forking from 386BSD. NetBSD saw its first release a few months before FreeBSD’s initial release, but has always followed a different path towards maximum portability unlike the more generic nature of FreeBSD which – per the FAQ – seeks to specialize on a limited number of platforms, while providing the widest range of features on these platforms.

This means that FreeBSD is equally suitable for servers and workstations as for desktops and embedded applications, but each platform gets its own support tier level, with the upcoming version 15.x release only providing first tier support for x86_64 and AArch64 (ARMv8). That said, if you happen to be a billion-dollar company like Sony, you are more than welcome to provide your own FreeBSD support. Sony’s Playstation 3, Playstation 4 and Playstation 5 game consoles namely all run FreeBSD, along with a range of popular networking and NAS platforms from other big names. Clearly, it’s hard to argue with FreeBSD’s popularity.

Despite this, you rarely hear people mention that they are running FreeBSD, unlike Linux, so one might wonder whether there is anything keeping FreeBSD from stretching its digital legs on people’s daily driver desktop systems?

Continue reading “FreeBSD At 30: The History And Future Of The Most Popular BSD-Based OS”

Hacker Tactic: Building Blocks

The software and hardware worlds have overlaps, and it’s worth looking over the fence to see if there’s anything you missed. You might’ve already noticed that we hackers use PCB modules and devboards in the same way that programmers might use libraries and frameworks. You’ll find way more parallels if you think about it.

Building blocks are about belonging to a community, being able to draw from it. Sometimes it’s a community of one, but you might just find that building blocks help you reach other people easily, touching upon common elements between projects that both you and some other hacker might be planning out. With every building block, you make your or someone else’s next project quicker, and maybe you make it possible.

Sometimes, however, building blocks are about being lazy.

Continue reading “Hacker Tactic: Building Blocks”

Will .IO Domain Names Survive A Geopolitical Rearrangement?

The Domain Name System (DNS) is a major functional component of the modern Internet. We rely on it for just about everything! It’s responsible for translating human-friendly domain names into numerical IP addresses that get traffic where it needs to go. At the heart of the system are the top-level domains (TLDs)—these sit atop the whole domain name hierarchy.

You might think these TLDs are largely immutable—rock solid objects that seldom change. That’s mostly true, but the problem is that these TLDs are sometimes linked to real-world concepts that are changeable. Like the political status of various countries! Then, things get altogether more complex. The .io top level domain is the latest example of that.

Continue reading “Will .IO Domain Names Survive A Geopolitical Rearrangement?”

A Hacker’s Travel Guide To Europe

This summer, I was pleasantly surprised when a friend of mine from Chicago turned up at one of the hacker camps I attended. A few days of hanging out in the sun ensued, doing cool hacker camp stuff, drinking unusual beverages, and generally having fun. It strikes me as a shame that this is such a rare occurrence, and since Hackaday is an American organisation and I am in a sense writing from its European outpost, I should do what I can to encourage my other friends from the USA and other parts of the world to visit. So here I’m trying to write a hacker’s guide to visiting Europe, in the hope that I’ll see more of you at future camps and other events.

It’s Intimidating. But Don’t Worry.

Danish road sign: "Se efter tog", or according to Google Translate: "Look for trains".
Yes. We’d find this intimidating, too. Bewitchedroutine, Public domain.

First of all, I know that it’s intimidating to travel to an unfamiliar place where the language and customs may be different. I’m from England, which sits on a small island in the North Atlantic, and believe it or not it’s intimidating for us to start traveling too. It involves leaving the safety of home and crossing the sea whether by flight, ferry, or tunnel, and that lies outside one’s regular comfort zone.

Americans live in a country that’s almost a continent in its own right, so you can satisfy your travel lust without leaving home. Thus of course the idea of landing in Germany or the Netherlands is intimidating. But transatlantic flights are surprisingly cheap in the scheme of international travel because of intense competition, so I’m here to reassure you that you can travel my continent ‘s hacker community without either feeling out of your depth, or breaking the bank.

Continue reading “A Hacker’s Travel Guide To Europe”

Mining And Refining: Mine Dewatering

From space, the most striking feature of our Pale Blue Dot is exactly what makes it blue: all that water. About three-quarters of the globe is covered with liquid water, and our atmosphere is a thick gaseous soup laden with water vapor. Almost everywhere you look there’s water, and even where there’s no obvious surface water, chances are good that more water than you could use in a lifetime lies just below your feet, and accessing it could be as easy as an afternoon’s work with a shovel.

And therein lies the rub for those who delve into the Earth’s depths for the minerals and other resources we need to function as a society — if you dig deep enough, water is going to become a problem. The Earth’s crust holds something like 44 million cubic kilometers of largely hidden water, and it doesn’t take much to release it from the geological structures holding it back and restricting its flow. One simple mineshaft chasing a coal seam or a shaft dug in the wrong place, and suddenly all the hard-won workings are nothing but flooded holes in the ground. Add to that the enormous open-pit mines dotting the surface of the planet that resemble nothing so much as empty lakes waiting to fill back up with water if given a chance, and the scale of the problem water presents to mining operations becomes clear.

Dewatering mines is a complex engineering problem, one that intersects and overlaps multiple fields of expertise. Geotechnical engineers work alongside mining engineers, hydrogeologists, and environmental engineers to devise cost-effective ways to control the flow of water into mines, redirect it when they can, and remove it when there’s no alternative.

Continue reading “Mining And Refining: Mine Dewatering”