GNSS Reception With Clone SDR Board

We love seeing the incredible work many RF enthusiasts manage to pull off — they make it look so easy! Though RF can be tricky, it’s not quite the voodoo black art that it’s often made out to be. Many radio protocols are relatively simple and with tools like gnuradio and PocketSDR you can quickly put together a small system to receive and decode just about anything.

[Jean-Michel] wanted to learn more about GNSS and USB communication. Whenever you start a project like this, it’s a good idea to take a look around at existing projects for designs or code you can reuse, and in this case, the main RF front-end board is taken from the PocketSDR project. This is then paired with a Cypress FX2 development board, and he re-wrote almost all of the PocketSDR code so that it would compile using sdcc instead of the proprietary Keil compiler. Testing involved slowly porting the code while learning about using Python 3 to receive data over USB, and using other equipment to simulate antenna diversity (using multiple antennas to increase the signal-to-noise ratio): Continue reading “GNSS Reception With Clone SDR Board”

GPS Tracking In The Trackless Land

Need a weekend project? [Cepa] wanted a GPS tracker that would send data out via LTE or the Iridium network. Ok, maybe that’s one for a very long weekend. However, the project was a success and saw service crossing the Barents Sea in the Arctic. Not bad.

Apparently, [Cepa] is very involved in sharing tracks to odd and remote places. While you may not have cell service in the middle of the Barents Sea, you can always see Iridium. The device does make some sacrifices to the expense of satellite communications. On LTE, the system pings your location every ten seconds. Without it, it dials up the sat connection once an hour. However, it does store data on a SD card, so — presumably — you get caught up when you have a connection.

Continue reading “GPS Tracking In The Trackless Land”

Misleading GPS, Philosophy Of Maps, And You

The oft-quoted saying “all models are wrong, but some are useful” is a tounge-in-cheek way of saying that at some level, tools we use to predict how the world behaves will differ from reality in some measurable way. This goes well beyond the statistics classroom it is most often quoted in, too, and is especially apparent to anyone who has used a GPS mapping device of any sort. While we might think that our technological age can save us from the approximations of maps and models, there are a number of limitations with this technology that appear in sometimes surprising ways. [Kyle] has an interesting writeup about how maps can be wrong yet still be incredibly useful especially in the modern GPS-enabled world. Continue reading “Misleading GPS, Philosophy Of Maps, And You”

[Scott Manley] Explains GPS Jamming

We always think of [Scott Manley] as someone who knows a lot about rockets. So, if you think about it, it isn’t surprising he’s talking about GPS — after all, the system uses satellites. GPS is used in everything these days, and other forms of navigation are starting to fall by the wayside. However, the problem is that the system is vulnerable to jamming and spoofing. This is especially important if you fear GPS allowing missiles or drones to strike precise targets. But there are also plenty of opportunities for malicious acts. For example, drone light shows may be subject to GPS attacks from rival companies, and you can easily imagine worse. [Scott] talks about the issues around GPS spoofing in the video, which you can see below.

Since GPS satellites are distant, blocking the signal is almost too easy, sometimes happening inadvertently. GPS has technology to operate in the face of noise and interference, but there’s no way to prevent it entirely. Spoofing — where you produce false GPS coordinates — is much more difficult.

Continue reading “[Scott Manley] Explains GPS Jamming”

GPS At Any Speed

[Mellow_Labs] was asked to create a GPS speedometer. It seems simple, but of course, the devil is in the details. You can see the process and the result in the video below.

We have to admit that he does things step-by-step. The first step was to test the GPS module’s interface. Then, he tried computing the speed from it and putting the result on a display. However, testing in the field showed that the display was not suitable for outdoor use.

That prompted another version with an OLED screen. Picking the right components is critical. It struck us that you probably need a fast update rate from the GPS, too, but that doesn’t seem to be a problem. Continue reading “GPS At Any Speed”

A Homebrew GPS Correction System For DIY Land Surveying

For those of you rushing to the comment section after reading the title to tell [Ben Dauphinee] that his DIY land surveying efforts are for naught because only a licensed surveyor can create a legally binding property description, relax — he already knows. But what he learned about centimeter-resolution GPS is pretty interesting, especially for owners of large rural properties like him.

[Ben]’s mapping needs are less rigorous than an official survey; he just wants to get the locations of features like streams and wood lines, and to get topographic elevations so that he has a general “lay of the land” for planning purposes. He originally engaged a surveyor for that job, but after shelling out $4,600 to locate a single property line, he decided to see what else could be done. Luckily, real-time kinematics, or RTK, holds the key. RTK uses a fixed GPS station to provide correction signals to a mobile receiver, called a rover. If the fixed station’s position is referenced to some monument of known position, the rover’s position can be placed on a map to within a couple of centimeters.

To build his own RTK system, [Ben] used some modules from SparkFun. The fixed station has an RTK breakout board and a multi-band GNSS antenna to receive positioning data, along with a Raspberry Pi to run the RTK server. An old iPhone with a prepaid SIM provides backhaul to connect to the network that provides correction data. [Ben]’s rover setup also came mainly from SparkFun, with an RTK Facet receiver mounted on a photographer’s monopod. Once everything was set up and properly calibrated, he was able to walk his property with the rover and measure locations to within 4 centimeters.

This was not an inexpensive endeavor — all told, [Ben] spent about $2,000 on the setup. That’s a lot, especially on top of what he already paid for the legal survey, but still a fraction of what it would have cost to have a surveyor do it, or to buy actual surveyor’s equipment. The post has a ton of detail that’s worth reading for anyone interested in the process of mapping and GPS augmentation.

Building A GPS Receiver From The Ground Up

One of the more interesting facets of GPS is that, at least from the receiver’s point-of-view, it’s a fairly passive system. All of the information beamed down from the satellites is out in the ether, all the time, free for anyone on the planet to receive and use as they see fit. Of course you need to go out and buy a receiver or, alternatively, possess a certain amount of knowledge to build a circuit that can take those signals and convert them into something usable. Luckily, [leaning_tower] has the required knowledge and demonstrates it with this DIY GPS receiver.

This receiver consists of five separate circuit boards, all performing their own function. The first, a mixer board, receives the signal via an active antenna and converts it to a lower frequency. From there it goes to a second mixer and correlation board to compare the signal to a local reference, then a signal processing board that looks at this intermediate frequency signal to make sense of the data its seeing. Finally, an FPGA interfacing board ties everything together and decodes the information into a usable form.

Dealing with weak signals like this has its own set of challenges, as [leaning_tower] found out. The crystal oscillator had to be decapped and modified to keep from interfering with the GPS radio since they operated on similar frequencies. Even after ironing out all the kinks, the circuit takes a little bit of time to lock on to a specific satellite but with a second GPS unit for checking and a few weeks of troubleshooting, the homebrew receiver is up and running. It’s an impressive and incredibly detailed piece of work which is usually the case with sensitive radio equipment like GPS. Here’s another one built on a Raspberry Pi with 12 channels and a pretty high accuracy.