Donated Atari Mega ST Gives A Peek At Game Development History

[Neil] from The Cave, a computer and console gaming museum in the UK, has a treat for vintage computing and computer gaming enthusiasts. They received an important piece of game dev history from [Richard Costello], who coded ports of Gauntlet 2, Mortal Kombat, and Primal Rage for Atari ST and Amiga home computers. [Richard] brought them his non-functional Atari Mega ST in the hopes that they could get it working again, and demonstrate to visitors how game development was done back in the 80s — but sadly the hardware is not in the best shape.

The Atari ST flagged deleted files for overwriting but didn’t actively wipe them, allowing an undelete utility to work.

That doesn’t stop [Neil], however. The real goal is seeing if it’s possible to re-create the development environment and access the game assets on the SCSI hard drive, and it’s not necessary to revive every part of the hardware to do that. The solution is to back up the drive using a BlueSCSI board which can act as a host, scan the SCSI bus, and dump any device it finds to an SD card. The drive didn’t spin up originally, but some light percussive maintenance solved that.

With the files pulled off the drive, it was time to boot it up using an emulator (which begins at the 16:12 mark). There are multiple partitions, but not a lot of files. There was one more trick up [Neil]’s sleeve. Suspecting that deleting everything was the last thing [Richard] did before turning the machine off decades ago, he fired up a file recovery utility. The Atari ST “deleted” files by marking them to be overwritten by replacing the first letter of the filename with a ‘bomb’ character but otherwise leaving contents intact. Lo and behold, directories and files were available to be undeleted!

[Neil] found some fascinating stuff such as mixed game and concept assets as well as what appears to be a copy of Ramrod, a never-released game. It’s an ongoing process, but with any luck, the tools and environment a game developer used in the 80s will be made available for visitors to experience.

Of course, modern retro gaming enthusiasts don’t need to create games the classic way; tools like GB Studio make development much easier. And speaking of hidden cleverness in old games, did you know the original DOOM actually had multi-monitor support hidden under the hood?

Continue reading “Donated Atari Mega ST Gives A Peek At Game Development History”

Behold A First-Person 3D Maze, Vintage Atari Style

[Joe Musashi] was inspired by discussions about 3D engines and decided to create a first-person 3D maze of his own. The really neat part? It could have been done on vintage Atari hardware. Well, mostly.

He does admit he had to do a little cheating to make this work; he relies on code for the ARM processor in the modern Atari VCS do the ray casting work, and the 6507 chip just handles the display kernel. Still, running his demo on a vintage Atari 2600 console could be possible, but would definitely require a Melody or Harmony cartridge, which are special reprogrammable cartridges popular for development and homebrew.

Ray casting is a conceptually simple method of generating a 3D view from given perspective, and here’s a tutorial that will tell you all you need to know about how it works, and how to implement your own.

[Joe]’s demo is just a navigable 3D maze rather than a game, but it’s pretty wild to see what could in theory have run on such an old platform, even if a few modern cheats are needed to pull it off. And if you agree that it’s neat, then hold onto your hats because a full 3D ray casting game — complete with a micro physics engine — was perfectly doable on the Commodore PET, which even had the additional limitation of a monochrome character-based display.

A 1930s Ham Station

[Mikrowave1] wanted to build an authentic 1930s-style ham radio station that was portable. He’s already done a regenerative receiver, but now he’s starting on a tube transmitter that runs on batteries. He’s settled on a popular design for the time, a Jones push-pull transmitter. Despite the tubes, it will only put out a few watts, which is probably good for the batteries which, at the time, wouldn’t have been like modern batteries. You can see the kickoff video below.

According to the video, these kinds of radios were popular with expeditions to exotic parts of the world. He takes a nostalgic look back at some of the radios and antennas used in some of those expeditions.

Continue reading “A 1930s Ham Station”

Apollo Computer: The Forgotten Workstations

Ever heard of Apollo Computer, Inc.? They were one of the first graphical workstation vendors in the 1980s, and at the time were competitors to Sun Microsystems.

But that’s enough dry historical context. Feast your eyes on this full-color, 26-page product brochure straight from 1988 for the Series 10000 “Personal Supercomputer” featuring multiple processors and more! It’s loaded with information about their hardware and design architecture, giving a unique glimpse into just how Apollo was positioning their offerings, and the markets they were targeting with their products.

Apollo produced their own hardware and software, which meant much of it was proprietary. Whatever happened to Apollo? They were acquired by Hewlett-Packard in 1989 and eventually shuttered over the following decade or so. Find yourself intrigued? [Jim Rees] of The Apollo Archive should be your next stop for everything Apollo-oriented.

Vintage computing has a real charm of its own, but no hardware lasts forever. Who knows? Perhaps we might someday see an Apollo workstation brought to life in VR, like we have with the Commodore 64 or the BBC Micro (which even went so far as to sample the sound of authentic keystrokes. Now that’s dedication.)

How To Lace Cables Like It’s 1962

Cable harnesses made wire management a much more reliable and consistent affair in electronic equipment, and while things like printed circuit boards have done away with many wires, cable harnessing still has its place today. Here is a short how-to on how to lace cables from a 1962 document, thoughtfully made available on the web by [Gary Allsebrook] and [Jeff Dairiki].

It’s a short resource that is to the point in all the ways we love to see. The diagrams are very clear and the descriptions are concise, and everything is done for a reason. The knots are self-locking, ensuring that things stay put without being overly tight or constrictive.

According to the document, the ideal material for lacing cables is a ribbon-like nylon cord (which reduces the possibility of biting into wire insulation compared to a cord with a round profile) but the knots and techniques apply to whatever material one may wish to use.

Cable lacing can be done ad-hoc, but back in the day cable assemblies were made separately and electrically tested on jigs prior to installation. In a way, such assemblies served a similar purpose to traces on a circuit board today.

Neatly wrapping cables really has its place, and while doing so by hand can be satisfying, we’ve also seen custom-made tools for neatly wrapping cables with PTFE tape.

Video Poker Takes Your Money In 10 Lines Of BASIC

It wasn’t easy, but [D. Scott Williamson] succeeded in implementing Jacks or Better Video Poker in 10 lines of BASIC, complete with flashing light and sound! Each round, one places a bet then plays a hand of 5-card draw, hoping to end up with Jacks or better.

This program is [Scott]’s entry into the 2024 BASIC 10 Liner Contest, which at this writing has concluded submissions and expects to announce results on April 6th 2024. Contestants may choose any 8-bit computer system BASIC, and must implement their program within ten lines of code (classically limited to 80 characters per line, but there are different categories with different constraints on line width.)

10 lines of BASIC is truly an exercise in information density.

We’ve seen impressive 10-line BASIC programs before, like this re-implementation of the E.T. video game. (Fun fact: while considered one of the worst video games of all time, there’s a compelling case to be made that while it was a flop, it was ahead of its time and mostly just misunderstood.)

These programs don’t look much like the typical BASIC programs many of us remember. They are exercises in information density, where every character counts. So we’re delighted to see [Scott] also provides a version of his code formatted and commented for better readability, and a logical overview that steps through each line.

He spends a little time talking about the various challenges, as well. For example, hand ranking required a clever solution. IF…THEN conditionals would rapidly consume the limited lines of code, so hands are ranked programmatically. The 52-card deck is also simulated, rather than simply generating random cards on the fly.

The result looks great, and you can watch it in action in the video, just under the page break. If this sort of challenge tweaks your interest, there’s plenty of time to get started on next year’s BASIC 10 Liner Contest. Fire up those emulators!

Continue reading “Video Poker Takes Your Money In 10 Lines Of BASIC”

Absolutely Everything About The Coleco Adam, 8-bit Home Computer

[Thom Cherryhomes] shared with us an incredible resource for anyone curious about the Coleco Adam, one of the big might-have-been home computers of the 80s. There’s a monstrous 4-hour deep dive video (see the video description for a comprehensive chapter index) that makes a fantastic reference for anyone wanting to see the Coleco Adam and all of its features in action, in the context of 8-bit home computing in the 80s.

[Image by Akbkuku, CC BY 4.0]
The Adam aimed to be an all-in-one computer package, targeting a family audience for both education and gaming purposes, with a price target around $600, a pretty compelling pitch.

The video is a serious in-depth look at the Adam, providing practical demonstrations of everything in various scenarios. This includes showcasing commercials from the period, detailing the system’s specs and history, explaining the Adam’s appeal, discussing specific features, comparing advertisement promises to real costs, and giving a step-by-step tutorial on how to use the system. All of the talk notes are available as well, providing a great companion to the chapter index.

Manufactured by the same Coleco responsible for the ColecoVision gaming console, the Adam had great specs, a great price, and a compelling array of features. Sadly, it was let down badly at launch and Coleco never recovered. However, the Adam remains of interest in the retrocomputing scene and we’ve even seen more than one effort to convert the Adam’s keyboard to USB.

Continue reading “Absolutely Everything About The Coleco Adam, 8-bit Home Computer”