An image of a dark mode Linux desktop environment. A white iTunes window stands out in a virtualized Windows 10 environment. Two iPod games, "Phase" and "Texas Hold 'Em" are visible in the "iPod Games" section of the library.

IPod Clickwheel Games Preservation Project

The iPod once reigned supreme in the realm of portable music. Hackers are now working on preserving one of its less lauded functions — gaming. [via Ars Technica]

The run of 54 titles from 2006-2009 may not have made the iPod a handheld gaming success, but many still have fond memories of playing games on the devices. Unfortunately, Apple’s Fairplay DRM has made it nearly impossible to get those games back unless you happened to backup your library since those games can’t be downloaded again and are tied to both the account and iTunes installation that originally purchased the game.

Continue reading “IPod Clickwheel Games Preservation Project”

Humble Television Tubes Make An FM Regenerative Radio

The regenerative radio is long-ago superseded in commercial receivers, but it remains a common project for electronics or radio enthusiasts seeking to make a simple receiver. It’s most often seen for AM band receivers or perhaps shortwave ham band ones, but it’s a circuit which also works at much higher frequencies. [Perian Marcel] has done just this, with a regenerative receiver for the FM broadcast band.

The principle of a regenerative receiver is that it takes a tuned radio frequency receiver with a wide bandwidth and poor performance, and applies feedback to the point at which the circuit is almost but not quite oscillating. This has the effect of hugely increasing the “Q”, or quality factor of the receiver, giving it much more sensitivity and a narrow bandwidth. They’re tricky to tune but they can give reasonable performance, and they will happily slope-demodulate an FM transmission.

This one uses two tubes from consumer grade TV receivers, the “P” at the start of the part number being the giveaway for a 300mA series heater chain. The RF triode-pentode isn’t a radio part at all, instead it’s a mundane TV field oscillator part pushed into service at higher frequencies, while the other triode-pentode serves as an audio amplifier. The original circuit from which this one is adapted is available online, All in all it’s a neat project, and a reminder that exotic parts aren’t always necessary at higher frequencies. The video is below the break.

Continue reading “Humble Television Tubes Make An FM Regenerative Radio”

A Lesson In RF Design Thanks To This Homebrew LNA

If you’re planning on working satellites or doing any sort of RF work where the signal lives down in the dirt, you’re going to need a low-noise amplifier. That’s typically not a problem, as the market is littered with dozens of cheap options that can be delivered in a day or two — you just pay your money and get to work. But is there a case to be made for rolling your own LNA?

[Salil, aka Nuclearrambo] thinks so, and he did a nice job showing us how it’s done. The first step, as always, is to define your specs, which for [Salil] were pretty modest: a low noise figure, moderate gain, and good linearity. He also wanted a bandpass filter for the 2-meter amateur radio band and for weather satellite downlinks, and a bias-tee to power the LNA over the coax feedline. The blog post has a detailed discussion of the electrical design, plus some good tips on PCB design for RF applications. We also found the discussion on bias-tee design helpful, especially for anyone who has ever struggled with the idea that RF and DC can get along together on a single piece of coax. Part 2 concentrates on testing the LNA, mostly using hobbyist-grade test gear like the NanoVNA and tiny SA spectrum analyzer. [Salil]’s tests showed the LNA lived up to the design specs and more, making it more than ready to put to work with an RTL-SDR.

Was this more work than buying an LNA? Absolutely, and probably with the same results. But then again, what’s to learn by just getting a pre-built module in the mail?

A side view of an Asian woman with brown hair. She has a faint smile and is wearing an earring that looks somewhat like a large copper snowflake. Near the ear hole is a small PCB with a blinking LED. To the right of the image is the text "LED Earring, Recieved power 50 µW"

Power-Over-Skin Makes Powering Wearables Easier

The ever-shrinking size of electronics and sensors has allowed wearables to help us quantify more and more about ourselves in smaller and smaller packages, but one major constraint is the size of the battery you can fit inside. What if you could remotely power a wearable device instead?

Researchers at Carnegie Mellon University were able to develop a power transmitter that lets power flow over human skin to remote devices over distances as far a head-to-toe. The human body can efficiently transmit 40 MHz RF energy along the skin and keeps this energy confined around the body and through clothing, as the effect is capacitive.

The researchers were able to develop several proof-of-concept devices including “a Bluetooth
ring with a joystick, a stick-and-forget medical patch which logs data, and a sun-exposure patch with a screen — demonstrating user input, displays, sensing, and wireless communication.” As the researchers state in the paper, this could open up some really interesting new wearable applications that weren’t possible previously because of power constraints.

If you’re ready to dive into the world of wearables, how about this hackable smart ring or a wearable that rides rails?

Continue reading “Power-Over-Skin Makes Powering Wearables Easier”

Supercon 2024: Badge Add-On Winners

This year we challenged the Hackaday community to develop Shitty Simple Supercon Add-Ons (SAO) that did more than just blink a few LEDs. The SAO standard includes I2C data and a pair of GPIO pins, but historically, they’ve very rarely been used. We knew the talented folks in this community would be able to raise the bar, but as they have a tendency to do, they’ve exceeded all of our expectations.

As we announced live during the closing ceremony at the 2024 Hackaday Supercon, the following four SAOs will be put into production and distributed to all the attendees at Hackaday Europe in Spring of 2025.

Continue reading “Supercon 2024: Badge Add-On Winners”

[miko_tarik] wearing diy AR goggles in futuristic setting

Pi Zero To AR: Building DIY Augmented Reality Glasses

If you’re into pushing tech boundaries from home, this one’s for you. Redditor [mi_kotalik] has crafted ‘Zero’, a custom pair of DIY augmented reality (AR) glasses using a Raspberry Pi Zero. Designed as an affordable, self-contained device for displaying simple AR functions, Zero allows him to experiment without breaking the bank. With features like video playback, Bluetooth audio, a teleprompter, and an image viewer, Zero is a testament to what can be done with determination and creativity on a budget. The original Reddit thread includes videos, a build log, and links to documentation on X, giving you an in-depth look into [mi_kotalik]’s journey. Take a sneak peek through the lens here.

[miko_tarik] wearing diy AR gogglesCreating Zero wasn’t simple. From designing the frame in Tinkercad to experimenting with transparent PETG to print lenses (ultimately switching to resin-cast lenses), [mi_kotalik] faced plenty of challenges. By customizing SPI displays and optimizing them to 60 FPS, he achieved an impressive level of real-time responsiveness, allowing him to explore AR interactions like never before. While the Raspberry Pi Zero’s power is limited, [mi_kotalik] is already planning a V2 with a Compute Module 4 to enable 3D rendering, GPS, and spatial tracking.

Zero is an inspiring example for tinkerers hoping to make AR tech more accessible, especially after the fresh news of both Meta and Apple cancelling their attempts to venture in the world of AR. If you are into AR and eager to learn from an original project like this one, check out the full Reddit thread and explore Hackaday’s past coverage on augmented reality experiments.

Continue reading “Pi Zero To AR: Building DIY Augmented Reality Glasses”

I Installed Gentoo So You Don’t Havtoo

A popular expression in the Linux forums nowadays is noting that someone “uses Arch btw”, signifying that they have the technical chops to install and use Arch Linux, a distribution designed to be cutting edge but that also has a reputation of being for advanced users only. Whether this meme was originally posted seriously or was started as a joke at the expense of some of the more socially unaware Linux users is up for debate. Either way, while it is true that Arch can be harder to install and configure than something like Debian or Fedora, thanks to excellent documentation and modern (but optional) install tools it’s no longer that much harder to run than either of these popular distributions.

For my money, the true mark of a Linux power user is the ability to install and configure Gentoo Linux and use it as a daily driver or as a way to breathe life into aging hardware. Gentoo requires much more configuration than any mainline distribution outside of things like Linux From Scratch, and has been my own technical white whale for nearly two decades now. I was finally able to harpoon this beast recently and hope that my story inspires some to try Gentoo while, at the same time, saving others the hassle.

A Long Process, in More Ways Than One

My first experience with Gentoo was in college at Clemson University in the late ’00s. The computing department there offered an official dual-boot image for any university-supported laptop at the time thanks to major effort from the Clemson Linux User Group, although the image contained the much-more-user-friendly Ubuntu alongside Windows. CLUG was largely responsible for helping me realize that I had options outside of Windows, and eventually I moved completely away from it and began using my own Linux-only installation. Being involved in a Linux community for the first time had me excited to learn about Linux beyond the confines of Ubuntu, though, and I quickly became the type of person featured in this relevant XKCD. So I fired up an old Pentium 4 Dell desktop that I had and attempted my first Gentoo installation.

For the uninitiated, the main thing that separates Gentoo from most other distributions is that it is source-based, meaning that users generally must compile the source code for all the software they want to use on their own machines rather than installing pre-compiled binaries from a repository. So, for a Gentoo installation, everything from the bootloader to the kernel to the desktop to the browser needs to be compiled when it is installed. This can take an extraordinary amount of time especially for underpowered machines, although its ability to customize compile options means that the ability to optimize software for specific computers will allow users to claim that time back when the software is actually used. At least, that’s the theory. Continue reading “I Installed Gentoo So You Don’t Havtoo”