How Purdue Hackers Made A Big Sign That They’re Really Proud Of

Let’s say you’ve got a fun little organization that does things together under a collective branding or banner. Maybe you want to celebrate that fact with some visually appealing signage? Well, that’s pretty much how [Jack] of the Purdue Hackers felt, so he and the gang put together a sizable logo sign to advertise their makerspace.

[Jack] explains that The Sign, as it is known, embodies the spirit of the Purdue Hackers. Basically, it’s about making something cool and sharing it with the world. He then outlines how they came to develop a “shining monument” to their organization with the use of LEDs and 3D printed components. The blog post explains how the group began with small prototypes, before stepping up to build a larger version for display in their makerspace window. It also chronicles the twists and turns of the project, including budget snarls and PCB errors that threatened to derail everything.

Ultimately, though, the Purdue Hackers prevailed, and The Sign has been shining bright ever since. Files are on GitHub for the curious, because it’s all open source! Meanwhile, if you’ve been cooking up your own neat signage projects, don’t hesitate to drop us a line!

A Neat Trick To 3D Print With Fewer Warping Issues

Warping! It messes up your 3D printed parts, turning them into a useless, dimensionally-inaccurate mess. You can design your parts around it, or try and improve your printer in various ways. Or, you can check out some of the neat tricks [Jan] has to tackle it.

The basic concept is a particularly valuable one. [Jan] notes that ABS and PLA are relatively compatible. In turn, he found that printing ABS parts on top of a thin layer of PLA has proven a great way to improve bed adhesion and reduce warping. He’s extended this technique further to other material combinations, too. The trick is to find two materials that adhere well to each other, where one is better at adhering to typical print beds. Thus, one can be used to help stick the other to the print bed. [Jan] also explains how to implement these techniques with custom G-Code and manual filament changes.

We’ve been discussing the issue of warping prints quite often of late. It’s a common problem we all face at one time or another! Video after the break.

Continue reading “A Neat Trick To 3D Print With Fewer Warping Issues”

Building A Hydrogen-Powered Foam Dart Cannon

Nerf blasters are fun and all, but they’re limited by the fact they have to be safe for children to play with. [Flasutie] faced no such restrictions when building his giant 40 mm foam dart launcher, and it’s all the better for it.

This thing is sizeable—maybe two to four times bigger than your typical Nerf blaster. But that’s no surprise, given the size of the foam ammunition it fires. [Flasutie] shows us the construction process on how the 3D-printed blaster is assembled, covering everything from the barrel and body assembly to the chunky magazine. Loading each round into the chamber is a manual process, vaguely akin to a bolt-action mechanism, but simplified.

It’s the method of firing that really caught our eye, though. Each round has a cartridge and a foam projectile. Inside the cartridge is a quantity of flammable HHO gas generated, presumably, from water via electrolysis. The blaster itself provides power to a spark gap in the cartridge that ignites the gas, propelling the projectile through the barrel and out of the blaster.

We’ve seen plenty of Nerf blasters and similar builds around these parts, including some with a truly impressive rate of fire. Video after the break.

Continue reading “Building A Hydrogen-Powered Foam Dart Cannon”

Producing An Exquisite Wooden Keyboard

Keyboards! They’ve been almost universally made out of plastic since the dawn of the microcomputer era. Meanwhile, wood is a rather desirable material and it lends itself rather well to touch-heavy human interface devices. As [ProcessX] shows us, though, it can take quite a bit of work to fabricate a keyboard entirely out of this material.

The video shows us the construction of a Japanese wooden keyboard from Hacoa, which retails for around $1000 USD. The video shows us how the wooden housing is produced from start to finish, beginning with the selection of some fine walnut. From there, we get to see how the frame is routed out and machined, along with the more delicate work to create all the keycaps out of wood, too. They’re laser engraved to give them high-quality markings that will last the test of time. What we don’t see is the construction of the electronics—it appears that’s handled separately, and the wooden frame and keycaps are then assembled around the otherwise complete existing keyboard.

It’s nice to see what it takes to produce commercial-quality parts like this out of wood. We’ve seen other wooden keyboard builds before, too.

Continue reading “Producing An Exquisite Wooden Keyboard”

Cataract Surgery For An Old TV

TVs used to be round, and the GE M935AWL is a great example of that. [bandersentv] found one of these ancient sets, but found it had a “cataract”—a large ugly discoloration on the tube. He set about repairing the tube and the set, restoring this grand old piece back to working order.

The video begins with the removal of the round CRT tube. Once it’s extracted from the set, it’s placed in a round garbage can which serves as a handy work stand for the unique device. It’s all delicate work as it’s very easy to damage a picture tube, particularly an old one. Removing the discoloration is quite a job—the problem is caused by adhesive holding the front layer safety glass on, which has going bad over the years. It requires lots of heat to remove. In doing this repair, [bandersentv] notes he’s also giving up the safety of the original extra glass layer on the front of the tube. Worth noting if you’re worried about a given tube’s integrity.

Of course, cleaning the tube is just part of the job. [bandersentv] then gave us a second video in which he returns the tube to its original home and gets the TV back up and running. The quality is surprisingly good given what poor shape the tube was in to begin with.

It’s funny, because modern TV repair is altogether a rather different affair.

Continue reading “Cataract Surgery For An Old TV”

Small Volumetric Lamp Spins At 6000 RPM

Volumetric displays are simply cool. Throw some LEDs together, take advantage of persistence of vision, and you’ve really got something. [Nick Electronics] shows us how its done with his neat little volumetric lamp build.

The concept is simple. [Nick] built a little device to spin a little rectangular array of LEDs. A small motor in the base provides the requisite rotational motion at a speed of roughly 6000 rpm. To get power to the LEDs while they’re spinning, the build relies on wire coils for power transmission, instead of the more traditional technique of using slip rings.

The build doesn’t do anything particularly fancy—it just turns on the whole LED array and spins it. That’s why it’s a lamp, rather than any sort of special volumetric display. Still, the visual effect is nice. We’ve seen some other highly capable volumetric displays before, though. Video after the break.
Continue reading “Small Volumetric Lamp Spins At 6000 RPM”

A Look Inside A Canadian Satellite TV Facility

If you’ve ever wondered what goes on in the ground facilities of a satellite TV operation, you could go banging on the doors or your local station. You’d probably get thrown out in short order. Alternatively, you could watch this neat little tour from [saveitforparts].

The tour takes us through a ground facility operated by the Canadian Broadcasting Corporation and Radio Canada in Montreal. The facility in question largely handles CBC’s French language content for the Canadian audience. We’re treated to a look at the big satellite dishes on the roof, as well as the command center inside. Wall to wall screens and control panels are the order of the day, managing uplinks and downlinks and ensuring content gets where it needs to go. Particularly interesting is the look at the hardcore hardware for full-strength transmission to satellites. The video also includes some neat trivia, like how CBC was the first broadcaster to offer direct satellite TV to customers in 1978.

We’ve seen [saveitforparts] tackle some interesting satellite hardware teardowns before, too.

Continue reading “A Look Inside A Canadian Satellite TV Facility”